Appendix 4: Total hip replacements with an uncemented monoblock acetabular cup - Flow diagram of included studies - Study details 1 (aspects of internal validity) - Study details 2 (aspects of external validity) - Study reported outcomes - References | | | Study details I (aspects of internal validity) | | | | | | | | | | |--------------------------|---|--|---|---|---|---|---|--|--|---|---------------------| | Study | Study design | Allocation method and concealment | Blinding
(surgeons/
patients/
assessors) | Prospective collection and assessment | Sample
size
needs
clearly
defined | Primary
Outcome
specified?
(yes/no) | Intention
-to-treat
analysis?
(yes/no) | Consecut
ive
patients
series?
(yes/no) | Group
compara
-bility
assessed
? | Controlling for con-
founding? | Procedure
period | | Baad-
Hansen,
2011 | Randomized
controlled
trial | Computer generated randomization sequence, sealed opaque envelopes opened during surgery | Unclear | Yes | Yes | Yes
(migration
based on
power
calculation) | Yes | Unclear | No | Randomized design | 2004 | | Della-
Valle, 2004 | Retrospective
comparison of
non-
consecutive
matched
cohorts | Allocation unclear (likely surgeon's preference), concealment NA | NA | Retrospective inclusion, data collection and assessment | No | Yes, wear
and
osteolysis | NA | Unclear | Demographics and preoperative assessments | Restriction (on cup
orientation) and
matching of patients
(implant materials and
demo-graphics), no
statistical correction for
baseline differences in
cup orientation | Unclear | | Periasamy,
2011 | Randomized
controlled
trial | Randomization
method unclear,
concealment
unclear | Unclear | Yes | Yes | Yes (bone
mineral
density) | Unclear | Unclear | Demographics and preoperative assessments | Randomized design | 2004 -
2006 | | Young,
2002 | Retrospective
comparison of
non-
consecutive
matched | Allocation unclear (likely surgeon's preference), concealment NA | NA | Retrospective inclusion, data collection and assessment | Yes | Yes (annual
wear rate
based on
power
calculation) | NA | Unclear | Demographics and preoperative assessments | Matching (implant materials and demographics), no statistical correction for baseline differences in cup orientation | Unclear | | | cohorts | | | | | | | | meme | cap offertation | | | 2011 | controlled | computer | mineral | graphics | design, no statistical | 2001 – | |------|------------|--------------------|---------|-----------------------------------|--|---------| | tria | trial | generated seq- | density | and pre-
operativ
e assess- | correction for between group differences | January | | | | uence in closed | | | | 2003 | | | | envelopes opened | | | | | | | | prior to surgery. | | ments | | | | | | However, | | | | | | | | imbalanced | | | | | | | | exclusion after | | | | | | | | randomization | | | | | | | | based on surgeon's | | | | | | | | preference | | | | | | Study details II (aspects of external validity) | | | | | | | | | | | | | | |---|--|----------------------------|--------|-----|--|--------------------------------------|---|--------------------------|--|--|-------------------------------|--|--| | Study | No. Of Mean age replace- (SD, ments range) (no. of patients) | | D, (%) | | Mean
length of
FU (SD,
Range) | Follow-
up com-
pletion
(%) | Prosthesis brands (new vs conventional) | Manu-
facturer | Site, surgeon | Hospital setting (designer/ university/ general) | Continent
(country) | | | | Baad-
Hansen,
2011 | 60 (60) | 62 (NA,
52-76) | 43.3 | 100 | NA (NA,
2 – NA) | 83.3 | Uncemented Monoblock cup
with trabecular tantalum
surface vs uncemented
modular Trilogy cup (Ti fiber
mesh surface) | Zimmer
and
Zimmer | Single center, single surgeon | University | Denmark
(Europe) | | | | Della-
Valle, 2004 | 130 (127) | 65.0 (NA,
37-87) | 66.1 | 100 | 5.8 (NA,
5–7.8) | NA | Uncemented Implex monoblock cup versus uncemented modular Trilogy cup (Ti fiber mesh surface) | Implex
and
Zimmer | Single center,
multiple
surgeon | University | North
America
(U.S.) | | | | Periasamy,
2011 | 55 (55) | 71.6 (NA,
59-83) | 67.3 | NA | NA (NA,
2-NA) | 98.2 | Uncemented trabecular metal (TMT) Acetabular cup versus cemented Contemporary flanged polyethylene cup | Zimmer
and
Stryker | Single center,
NA | General | Europe
(united
kingdom) | | | | Young,
2002 | 82 (79) | NA | NA | NA | 5.4 (NA,
3.8-8.0) | 100 | Uncemented nonmodular metal-backed porous coated cup <i>versus</i> uncemented modular metal-backed backed porous coated Duraloc cup | DePuy | Single center,
NA | General | North
America
(U.S.) | | | | Zerahn,
2011 | 219 (219) | 67.5 (10.8 <i>,</i> 18-87) | 60.4 | NA | 4.0 (NA,
0-NA) | 48.4 | Uncemented monoblock Asian cup <i>versus</i> uncemented modular Universal porous coated Ringloc cup | Biomet
Inc. | Single center,
multiple
surgeons | University | Europe
(Denmark) | | | | Study | Quality | Outcome | Harris Hip Score
(mean, SD / range) | | Oxford Hip Score
(mean, SD / range) | | WOMAC
(mean, SD / range) | | SF-12
(mean, SD / range) | | Preference
(count, proportion) | | |-----------------------|----------|-------------------------------|--|----------------|--|----------------|-----------------------------|----------------|-----------------------------|----------------|-----------------------------------|--------------| | | | | Mono- | Modular | | | | | block | Modular | block | Modular | block | Modular | block | iviodular | block | Modular | | Baad-
Hansen, | Moderate | Preoperative | 50
(28-70) | 48
(34-64) | NA | 2011 | to high | Postoperative | 92
(76-100) | 95
(77-100) | NA | Della-
Valle, 2004 | Low | Preoperative
Postoperative | NA
NA | Periasamy, | Low to | Preoperative | Done
but NA NA | NA | | 2011 | moderate | Postoperative | Done
but NA 6
(7%) | 8
(9%) | | Young, | | Preoperative | NA | 2002 | Low | Postoperative | NA 14
(10.1%) | 12
(8.7%) | | Zerahn,
2011 | Low | Preoperative | NA | NA | 38.6
(7.6) | 40.3
(9.4) | NA | NA | NA | NA | NA | NA | | | | Postoperative | NA | NA | 16.9
(5.7) | 19.0
(8.1) | NA = not available (not applicable or not provided), * significant difference - Baad-Hansen T, Kold S, Nielsen PT, Laursen MB, Christensen PH, Soballe K. Comparison of trabecular metal cups and titanium fiber-mesh cups in primary hip arthroplasty: a randomized RSA and bone mineral densitometry study of 50 hips. Acta Orthop. 2011 Apr;82(2):155-60 - Della Valle AG, Doty S, Gradl G, Labissiere A, Nestor BJ. Wear of a highly cross-linked polyethylene liner associated with metallic deposition on a ceramic femoral head. J Arthroplasty. 2004 Jun;19(4):532-6 - Periasamy K, Watson WS, Mohammed A, Murray H, Walker B, Patil S, Meek RM. A randomised study of peri-prosthetic bone density after cemented versus trabecular fixation of a polyethylene acetabular component. J Bone Joint Surg Br. 2011 Aug;93(8):1033-44. - Young AM, Sychterz CJ, Hopper RH Jr, Engh CA. Effect of acetabular modularity on polyethylene wear and osteolysis in total hip arthroplasty. J Bone Joint Surg Am. 2002 Jan;84-A(1):58-63. - Zerahn B, Borgwardt L, Ribel-Madsen S, Borgwardt A. A prospective randomised study of periprosthetic femoral bone remodeling using four different bearings in hybrid total hip arthroplasty. Hip Int. 2011 Apr 6;21(2):176-186. ## Excluded due to first generation monoblock cup: - Kearns SR, Jamal B, Rorabeck CH, Bourne RB. Factors affecting survival of uncemented total hip arthroplasty in patients 50 years or younger. Clinical Orthopaedics and Related Research (453):103-109, 2006. - Schneider W, Knahr K. Total hip replacement in younger patients: Survival rate after avascular necrosis of the femoral head. Acta Orthopaedica Scandinavica 75 (2):142-146, 2004. - Callaghan JJ, Savory CG, O'rourke MR, and Johnston RC. Are all cementless acetabular components created equal? J Arthroplasty 19 (4 Suppl 1):95-98, 2004. - Engh CA, Hopper RH Jr, Engh CA Jr. Long-term porous-coated cup survivorship using spikes, screws, and press-fitting for initial fixation. J Arthroplasty. 2004 Oct;19(7 Suppl 2):54-60 - Orishimo KF, Hopper RH, Engh CA Jr. Long-term in vivo wear performance of porous-coated acetabular components sterilized with gamma irradiation in air or ethylene oxide. J Arthroplasty 18 (5):546-552, 2003.